

Synthesis of Unsaturated Silicon Analogues of Acyclonucleosides

Laurent Latxague, Jacques Thibon and Gérard Déléris*

Laboratoire de Chimie Bio-Organique, Université Victor Segalen Bordeaux 2, 146 rue Léo Saignat, F-33076 Bordeaux Cedex, France

Received 17 February 1998; accepted 22 March 1998

Abstract: Unsaturated acyclic sila-thymidine analogues were prepared in order to improve their rigidity and to seek better pairing with complementary nucleotides. © 1998 Elsevier Science Ltd. All rights reserved.

Modified nucleoside analogues incorporable in oligodeoxynucleotide (ODN) solid-phase synthesis for use as oligonucleotide-based or antisense prodrugs ¹ might improve cellular penetration and nuclease resistance. To avoid the stereochemical complexity of the sugar moiety, we designed and previously synthesized ^{2, 3} acyclic nucleoside analogues which contain: (a) a silicon atom in place of the carbon-4' of the deoxyribose in order to improve the overall lipophilicity, (b) two hydroxymethyl groups to anchor the target within the ODN, and (c) a propyl chain linking the silicon to a nucleic base.

B B T, A, C, G

$$R = R' = OH \text{ then}$$
 $R = DMTr \text{ and } R' = (O)P(NiPr_2)CH_2CH_2CN$

The three-carbon chain length was chosen to avoid β -elimination of the nucleobase which might occur with a two-carbon chain, even though this shorter spacer mimics more closely the actual nucleoside structure. However, a preliminary study of the stability of a ACTTGCTTTTGACACAA duplex containing up to 3 modified thymidine or adenosine analogues ⁴ revealed a destabilization of base pairing as the melting temperatures were lowered by 7.5 to 12°C for each analogue incorporated into a strand. In fact, this destabilization is comparable to that observed with pure carbon acyclonucleoside analogues ⁵. This result, along with molecular modeling observations, encouraged us to undertake the synthesis of more strained molecules.

Therefore, the present work describes the synthesis of *unsaturated* acyclic thymidine analogues with a Z/E 2-propenyl and vinylidene ethyl structure.

Thus, Z isomers 1a and 1b were prepared according to Scheme 1. Propargyl thymine 7, obtained in 80% yield from propargyl bromide and in situ-generated bis(trimethylsilyl)thymine, was converted into a magnesium acetylide and then reacted at low temperature with both chloromethyldimethylchlorosilane or bis(chloromethyl)methylchlorosilane to give 6a (60%) and 6b (19%).

Sheme 1 - i: 1) HMDS, Me₃SiCl 2) propargyl bromide, DMF 3) H₂O ii: 1) EtMgBr 2) ClCH₂Si(Me)(R)H, -30°C 3) H₂O iii: H₂, Pd/BaCO₃, quinoline iv: AcONa, DMF v: APTS, MeOH.

Hydrogenation over palladium-on-barium carbonate as catalyst in the presence of quinoline to prevent further reduction yielded 5a (74%) and 5b (70%). Nucleophilic displacement of chlorine in the latter compounds by the acetate ion gave esters 4a (30%) and 4b (39%), which were treated with MeOH/H⁺ to yield 1a ⁶ (80%) and 1b⁷ (52%) respectively.

To prepare the E isomers, propargyl thymine 7, which was first protected by means of HMDS/Me₃SiCl, was subjected to a hydrosilylation reaction with chloroplatinic acid as catalyst to give the trans 2-propenyl 11a and vinylidene ethyl 12a isomers (Scheme 2). Unfortunately, both were obtained insufficiently at this early stage of the synthesis (6 and 11% repectively).

Scheme 2 - i: ClCH2Si(Me)(Me)H, H2PtCl6, THF.

Previous reports of a successful palladium-catalysed addition of the sodium salt of nucleoside bases ⁸ or nucleoside base analogues to allylic acetate ⁹ by way of a Trost reaction ¹⁰, prompted us to investigate this method. This was performed on a propargyl acetate silylated adduct (Scheme 3).

Scheme 3 - i: ClCH2Si(Me)(R)H, H2PtCl₆, THF ii: Sodium salt of thymine/DMF, Pd2(dba)3/dppe/THF iii: AcONa, DMF iv: MeOH, PTSA v: Sodium salt of thymine/DMF, Pd(PPh3)4/THF.

of chloroplatinic acid, commercial propargyl acetate Thus. the presence chloromethyldimethylsilane or bis(chloromethyl)methylchlorosilane to give a 1:1 mixture of 11a/12a in a 70% yield, and 11b/12b in a 88% yield. The two isomers could not be easily separated so the mixture was used thereafter. Compounds 11a/12a were reacted with the sodium salt of thymine (route A) in the presence of tris(benzylideneacetone)palladium(0) and 1,2-bis(diphenylphosphino)ethane (dppe) to give 7a (14%) and 8a (28%), which could both be separated on a silica gel column. The two compounds were treated with the acetate ion to give 5a (43%) and 6a (50%), and then 2a 11 (72%) and 3a 12 (70%) upon treatment with MeOH/H. When applied to the 11b/12b mixture (step ii, route A), this scheme gave very poor yields and numerous byproducts. Thus, the synthetic route B was used as an alternative. Prior to the Trost reaction conducted with tetrakis(triphenylphosphine)palladium(0), compounds 11a/12a and 11b/12b were treated with the acetate ion to give 9a/10a (95%) and 9b/10b (77%). Surprisingly, the 9a,b/10a,b mixtures gave 8a (10%) and 8b (15%) only when subjected to the Trost reaction, whereas 9a,b were recovered in unreacted form. Finally, compounds 8a and 8b reacted in MeOH/H* afforded the mono- and dihydroxylated compounds 3a and 3b 13 respectively in 83 and 53% yield.

Thus, a new access to novel unsaturated nucleoside analogues has been found. These derivatives might be of some interest as antimetabolites, so we are presently testing their ability to be phosphorylated by cellular kinases. Moreover, after tritylation and activation as 2-cyanoethyl N,N-diisopropylphosphoramidite, they will

be incorporated into oligonucleotides, where we expect an improvement of their hybridization properties with the complementary strand.

REFERENCES AND NOTES

- 1. Cohen, J. S., Ed. Oligodeoxynucleotides as Antisense Inhibitors of Gene Expression; CRC Press; Bocca Raton, FL, 1987.
- 2. Latxague, L.; Thibon, J.; Guillot, C.; Moreau S.; Déléris, G. Tetrahedron Lett. 1994, 35, 5869-5872.
- 3. Thibon, J.; Latxague, L.; Déléris, G. J. Org. Chem. 1997, 62, 4635-4642.
- 4. Unpublished results Dr. S. Moreau, INSERM; bold letters give the position of the various substitutions: TGAACGAAACTGTGTT, TGAACGAAACTGTGTT AND TGAACGAAACTGTGTT.
- 5. Schneider, K. C.; Benner, S. A. J. Am. Chem. Soc. 1990, 112, 453.
- 6. Satisfactory spectroscopic data (200 MHz ¹H, 50 MHz ¹³C and MS) were obtained for all new compounds. **1a**, ¹H NMR (CDCl₃) 0.18 (s, 6H, CH₃Si), 1.84 (s, 3H, CH₃ thymine), 2.43 (s, 1H, OH), 3.49 (s, 2H, CH₂OH), 4.40-4.43 (d, 2H, *J* = 6.2 Hz, CH₂N), 5.76-5.83 (d, 1H, *J* = 14 Hz, CHSi), 6.17-6.31 (m, 1H, CHCH₂), 7.09 (s, 1H, H-6 thymine), 9.94 (s, 1H, NH); ¹³C NMR (CDCl₃) -3.42 (CH₃Si), 12.18 (CH₃ thymine), 49.75 (CH₂N), 54.81 (CH₂O), 110.90 (C-5 thymine), 132.37 (CHSi), 139.85 (C-6 thymine), 142.07 (CHCH₂), 151.22 (C-2 thymine), 164.44 (C-4 thymine); MS (FAB) m/e 223.4 (100) [M-22]+, 255.4 (100) [M+1]+, 237.4 (76) [M-14] exact: 254.2.
- 7. Compound **1b**, ¹H NMR (CDCl₃+CD₃OD) 0.05 (s, 3H, CH₃Si), 1.68 (s, 3H, CH₃ thymine), 3.39 (s, 4H, CH₂OH), 4.28-4.31 (d, 2H, *J* = 6.2 Hz, CH₂N), 5.61-5.68 (d, 1H, *J* = 14 Hz, CHSi), 6.11-6.25 (m, 1H, CHCH₂), 7.12 (s, 1H, H-6 thymine); ¹³C NMR(CDCl₃) -6.77 (CH₃Si), 11.84 (CH₃ thymine), 50.10 (CH₂N), 52.65 (CH₂OH), 110.80 (C-5 thymine), 129.06 (CHSi), 140.64 (C-6 thymine), 143.73 (CHCH₂), 151.43 (C-2 thymine), 164.40 (C-4 thymine); MS (FAB) m/e 255.7 [M-15]+, 271.4 [M+1]+, exact: 270.1.
- 8. Ghosh, A; Ritter, A. R.; Miller, M. J. J. Org. Chem. 1995, 60, 5808-5813.
- 9. Gunderson, L.-L.; Benneche, T.; Undheim, K. Tetrahedron Lett. 1992, 33, 1085-1088.
- 10. Trost, B. M.; Verhoven, T. R. in *Comprehensive Organometallic Chemistry*, Pergamon, New York, 8, 799-938, **1982**.
- 11. Compound 2a. ¹H NMR (CDCl₃) 0.01 (s, 6H, CH₃Si), 1.80 (s, 3H, CH₃ thymine), 2.46 (s, 1H, OH), 3.31 (s, 2H, CH₂O), 4.26-4.28 (d, 2H, J= 6Hz, CH₂N), 5.68-5.77 (d, 1H, J= 19 Hz, CHSi), 5.98-6.07 (dt, 1H, J= 19 Hz, CH=CHSi), 6.91 (s, 1H, H-6 thymine), 10.24 (s, 1H, NH); ¹³C NMR (CDCl₃) 5.02 (CH₃Si), 12.19 (CH₃ thymine), 51.79 (CH₂N), 54.46 (CH₂O), 110.76 (C-5 thymine), 130.62 (CHSi), 140.26 (C-6 thymine), 140.65 (CH=CHSi), 151.15 (C-2 thymine), 164.76 (C-4 thymine).
- 12. Compound 3a. ¹H NMR (CDCl₃) 0.10 (s, 6H, CH₃Si), 1.83 (s, 3H, CH₃ thymine), 2.60 (s, 1H, OH), 3.40 (s, 2H, CH₂O), 4.41 (s, 2H, CH₂N), 5.51-5.55 (m, 2H, CH₂=), 6.93 (s, 1H, H-6 thymine), 10.11 (s, 1H, NH); ¹³C NMR (CDCl₃) -5.42 (CH₃Si), 12.19 (CH₃ thymine), 51.83 (CH₂N), 54.06 (CH₂Si), 110.67 (C-5 thymine), 127.50 (CH₂=), 140.41 (C-6 thymine), 144.11 (C=CH₂), 151.24 (C-2 thymine), 164.67 (C-4 thymine); MS (FAB) m/e 255.1 (95) [M+1]+, 223.0 (100) [M-31]+, exact: 254.3.
- 13. Compound **3b**. ¹H NMR (CDCl₃+CD₃OD) 0.02 (s, 3H, CH₃Si), 1.72 (s, 3H, CH₃ thymine), 3.38 (s, 4H, CH₂O), 4.31 (s, 2H, CH₂N), 5.44-5.47(m, 2H, CH₂=), 6.93 (s, 1H, H-6 thymine); ¹³C NMR (CDCl₃+CD₃OD) -8.94 (CH₃Si), 11.64 (CH₃ thymine), 51.72 (CH₂Si), 110.43 (C-5 thymine), 127.61 (CH₂=), 140.92 (C-6 thymine), 141.68 (C=CH₂), 151.17 (C-2 thymine), 164.93 (C-4 thymine); MS (FAB) m/e 271.4 (100) [M+1]+, 293.3 (93) [M+23]+; HRMS (FAB+) found: 271.111157 exact: 271.111411.